Il Pesa-Nervi

«Lei parla a vanvera, giovanotto!
No, penso a dei critici con la barba».

I frattali di Pollock

La ricorsività dei frattali nell'arte di Jackson Pollock.

"Io mi occupo dei ritmi della natura"
Jackson Pollock (mentre stava realizzando l'opera One)

Un'opera di Pollock

L'"artista sciamano": è questo il soprannome di cui si avvalse il "cowboy mancato" che nacque a Cody, nel Wyoming (Stati Uniti), il 28 gennaio del 1912 e che rispondeva al nome di Jackson Pollock; un soprannome che l'artista-pittore ricevette all'inizio degli anni quaranta, proprio nel periodo in cui stava per uscire, grazie all'aiuto di un giovane psicoanalista junghiano (Joseph Henderson), dall'infausto tunnel dell'alcoolismo, in cui era precipitato verso la metà degli anni trenta.

L'apice della notorietà e del successo economico, Pollock, finchè rimase in vita, si può dire che non lo raggiunse mai. Egli comunque rivelò tutto il suo talento dopo la prima metà degli anni quaranta; infatti correva l'anno 1946, quando in una fattoria di Long Island (New York), in un granaio adibito a studio, iniziò ad "esplorare" la tecnica pittorica da egli stesso definita dello "sgocciolamento"; una tecnica di cui egli stesso poté vantare la paternità e che ancor oggi è strettamente legata al nome del grande artista americano, considerato quasi una leggenda, un mito che, per divenire tale, forse dovette prima lasciare questo mondo, proprio nello stesso modo in cui lo lasciò James Dean. La sera dell'undici agosto 1956, Pollock perse il controllo della sua spider uscendo di strada; catapultato fuori dall'abitacolo, si schiantò contro un albero, ponendo fine ad una carriera fra le più straordinarie nella storia dell'arte moderna.

Quando qualche mese fa, rovistando tra pile di vecchie riviste scientifiche alla ricerca di qualche articolo in grado di darmi delle idee, incappai in quello di Richard P. Taylor, a momenti ebbi un sussulto. Quella breve considerazione che espressi verso la fine del mio libro: Dio=mc2 , a proposito di alcuni aspetti della vita di ogni essere umano, aveva delle basi scientifiche!; e io, inconsapevolmente (poiché ancora non ero a conoscenza del lavoro di R. P. Taylor, quando scrissi quel libro), ne accentuai le potenziali analogie con il surrealistico mondo dell'artista americano, affermando che:

La vita è come un quadro di Pollock, se si scava fino in fondo, anche nel caos è possibile riscontrare un certo ordine, una certa logica degli eventi, che man mano che si susseguono, definiscono la vita di ogni essere umano.

Ebbene sì, ciò che un docente di fisica dell'Università dell'Oregon (Stati Uniti), di nome Richard P. Taylor, circa dieci anni fa riuscì a dimostrare, è che con determinate analisi al computer, nei famosi dipinti di Pollock in cui venne usata la tecnica dello "sgocciolamento", è possibile rilevare la presenza di schemi frattali. Con queste parole Richard P.Taylor spiegava nel suo articolo come iniziarono le sue ricerche:

Il primo passo nelle nostre ricerche è stato la scansione al computer di un dipinto di Pollock; l'immagine così ottenuta è stata poi ricoperta con un reticolo generato al computer di celle quadrate tutte uguali. Analizzando quali celle fossero occupate dallo schema dipinto e quali vuote, siamo riusciti a determinare le qualità statistiche dello schema. Inoltre, riducendo la dimensione delle celle, lo si poteva esaminare a un ingrandimento maggiore. Abbiamo così potuto analizzare tutti gli elementi del dipinto, dalle più piccole macchioline di colore fino a quelle delle dimensioni di un metro. Sorprendentemente, abbiamo trovato che gli schemi sono frattali, e lo sono sull'intero intervallo dimensionale scelto, ai cui estremi stanno due valori che differiscono di un fattore dimensionale superiore a 1000. Riassumendo, è possibile affermare che Jackson Pollock dipingeva frattali 25 anni prima della loro scoperta nei fenomeni naturali.

La geometria frattale è stata sviluppata negli anni sessanta e settanta a partire dagli studi sulla complessità di Benoît Mandelbrot. Il termine frattale deriva dal latino fractus (spezzato), per indicare la natura irregolare di queste forme. L'analisi del comportamento caotico si basa sulla teoria matematica dei frattali: un frattale è quindi una struttura geometrica irregolare che può essere suddivisa in elementi, ciascuno dei quali riproduce approssimativamente l'intero oggetto (proprietà di auto-somiglianza). Inoltre, ogni frattale è caratterizzato dalla dimensione frattale definita come la capacità del frattale stesso a riempire lo spazio in cui è immerso. I risultati raggiunti dalla teoria frattale sono, però, difficilmente applicabili a quei sistemi che non possiedono dei modelli matematici. Molte figure frattali possono essere generate con procedure matematiche d'iterazione nel piano complesso. I frattali matematici sicuramente più conosciuti, sono i famosi insiemi di Julia.

La base dell'insieme di Julia è la semplice applicazione: z --> z2 + c ; dove z è una variabile complessa [1] e c è una costante complessa. La procedura iterativa consiste nel prendere un punto qualunque nel piano complesso, elevarlo al quadrato, aggiungere la costante c, elevare di nuovo il risultato al quadrato, aggiungere un'altra volta c, e così via. Per ogni scelta del valore iniziale di z, si otterranno risultati diversi. In alcuni casi z assumerà valori sempre crescenti, fuggendo verso l'infinito quando si procede nelle iterazioni; mentre in altri casi z continuerà ad assumere valori finiti. L'insieme di Julia è l'insieme di quei valori di z, ovvero di quei punti nello spazio complesso, che non vanno all'infinito per effetto dell'iterazione.

Didascalia:
Un'immagine dell'insieme di Julia

Stando agli studi e alle ricerche di Taylor, si arriva alla conclusione che Pollock partiva dipingendo piccole "isole" localizzate di traiettorie sulla tela. Il fatto interessante è che alcuni andamenti naturali iniziano proprio con piccole nucleazioni. In seguito egli dipingeva traiettorie più lunghe ed estese che univano le isole, sommergendole gradualmente in una densa rete frattale di pigmento. Questo stadio del dipinto formava uno strato di riferimento, che guidava l'artista nelle successive fasi di pittura. Durante il processo di collegamento, la complessità del dipinto (ovvero il suo valore di D [2]), aumentava su una scala temporale inferiore a un minuto. Dopo questa fase rapida, Pollock faceva una pausa, per tornare sulla tela solo in seguito. In un periodo che variava da due giorni a sei mesi, depositava ulteriori strati di traiettorie di differenti colori sopra lo strato di riferimento. Essenzialmente, egli procedeva raffinando man mano la complessità dello strato di riferimento. Una volta terminato il dipinto, Pollock cercava di esaltarne al massimo il carattere frattale, rimovendo le zone più esterne in cui la qualità del frattale si deteriorava.

Durante le sue ricerche, Taylor giunse inoltre ad un'altra interessante conclusione: il valore di D nelle opere di Pollock aumentò nel corso del decennio in cui egli dipinse con la tecnica dello sgocciolamento, passando da 1,12 nel 1945 a 1,7 nel 1952 (fino a raggiungere 1,9 in un dipinto che l'autore distrusse). Osserva Taylor che: «I frattali più intricati, con alti valori di D, catturano l'attenzione degli osservatori più efficacemente dei rilassanti frattali con valori intermedi, e potrebbero essere risultati attraenti per l'artista».

Indagando sulle preferenze visive delle persone, in relazione agli schemi frattali, Clifford A. Pickover del T. J. Watson Research Center dell'IBM, utilizzando frattali generati al computer per diversi valori di D, ha osservato che le persone arruolate per le ricerche tendevano a preferire frattali con un valore di 1,8. Parallelamente, generando frattali con un metodo differente, Deborah J. Aks e Julien C. Sprott dell'Università del Wisconsin-Madison hanno rilevato che il valore preferito sarebbe pari a 1,3. Ciò che ovviamente si evince da questi primi esperimenti è che tale discrepanza stia ad indicare che nessun valore di D sia preferito a tutti gli altri e che la qualità estetica dei frattali dipenda in realtà da come essi vengono generati. Nonostante queste "prime evidenze", Taylor rimase comunque dell'idea che, citando le sue stesse parole: «(...) un valore[di D] universalmente preferito esista veramente».

Egli si dedicò quindi ad altri esperimenti, usufruendo della collaborazione di un gruppo di psicologi, esperti nelle interazioni tra psiche e percezione visiva. Insieme a questo gruppo di esperti, egli impostò le sue ricerche su tre categorie fondamentali di frattali: naturali (come alberi, montagne, nubi, ecc.), matematici (simulazioni computerizzate) e prodotti manualmente (parti dei dipinti di Pollock). Nei test di percezione visiva, i partecipanti espressero una preferenza per valori di D che oscillavano tra 1,3 e 1,5 a prescindere dall'origine degli schemi. Durante i suoi esperimenti, Taylor scoprì che i test di percezione e valutazione visiva eseguiti sui partecipanti procuravano inoltre un effetto sulla condizione fisiologica dell'osservatore.

Come egli stesso puntualizzò: «Utilizzando prove di conduttanza della pelle per misurare i livelli di stress, abbiamo trovato che valori intermedi di D sono in grado di mettere gli osservatori a loro agio», aggiungendo: «Certamente, queste indagini sono solo all'inizio e i risultati sono parziali; tuttavia è interessante notare che molti degli schemi frattali naturali intorno a noi hanno valori di D nello stesso intervallo: le nubi,per esempio, hanno valori di D di 1,3».

A distanza di circa dieci anni dalle ricerche di Richard P. Taylor, non sembrano esserci stati (da parte di altri ricercatori) ulteriori "risvolti positivi" o "conferme" di altro genere in relazione ad una sorta di "dimensione frattale universalmente preferita" da noi comuni mortali. Se quest'ultima esistesse realmente, comunque, non dimostrerebbe altro che l'eterna e perfetta armonia che sussiste tra l'Uomo e tutti gli altri elementi del Creato, nel momento esatto in cui la nostra psiche razionale incontra l'Inconscio. Degli attimi che possono dar vita a tutto ciò che di creativo potenzialmente possediamo (e Pollock ne è un esempio), dandoci quindi l'opportunità di lasciare un segno del nostro passaggio su questa Terra, quand'anche la nostra fittizia "volontà soggettiva" non ne avvertisse la necessità.

Didascalia:)
Pollock-at-work

Bibliografia:

Riviste:

Ordine nel Caos di Pollock, di Richard P.Taylor (Le scienze, gennaio 2003, pagg. 88-93).

Sitografia:

http://it.wikipedia.org/wiki/Frattale

[1] Eulero,il matematico più prolifico di tutti i tempi, nel suo "Trattato di Algebra", disse: «Tutte le espressioni come radice quadrata-1, radice quadrata-2 ecc..., sono di conseguenza numeri impossibili o immaginari, poiché rappresentano radici di quantità negative; e di questi numeri possiamo invero affermare che non sono né zero, né sono maggiori di zero, né minori di zero, il che li rende necessariamente immaginari o impossibili». In seguito, nel diciannovesimo secolo, un altro geniale matematico che rispondeva al nome di Carl Friedrich Gauss, dichiarò che: «Si può assegnare un'obbiettiva esistenza alle quantità immaginarie». Gauss, rendendosi conto che , com'è ovvio, sulla retta numerica non c'è posto per i numeri immaginari, ebbe la geniale idea di disporli su un'asse perpendicolare passante per il punto zero, creando così un sistema di coordinate cartesiane. In questo sistema tutti i numeri reali giacciono sull' "asse reale", mentre tutti i numeri immaginari stanno sull' "asse immaginario". Diagramma cartesiano dei numeri complessi.La radice quadrata di -1 è detta "unità immaginaria", ed è simboleggiata dalla lettera "i"; e poiché la radice quadrata di un numero negativo può sempre essere espressa come radice quadrata-a = radice quadrata-1 . radice quadrata a = iradice quadrataa , ne consegue che tutti i numeri immaginari si possono disporre sull'asse immaginario come multipli di i.

Grazie a questo ingegnoso espediente, Gauss creò uno spazio in cui ospitare non solo i numeri immaginari, ma anche tutte le possibili combinazioni di numeri reali e immaginari, come ad esempio (2 + i ) , (5 - 2i ) e così via. Tali combinazioni sono dette "numeri complessi" e sono rappresentate da punti nel "piano complesso", cioè nel piano su cui giacciono l'asse reale e quello immaginario. In generale, ogni numero complesso può essere scritto nella forma: z = x + iy (dove x è detta la "parte reale" e y la "parte immaginaria".

[2] Una caratteristica fondamentale di un frattale è la sua "dimensione frattale", indicata con la lettera "D". Per le forme euclidee, la dimensione è un concetto semplice, descritto da valori interi. Per una linea continua, che non contiene frattali, D equivale a 1 ; per un'area completamente riempita, il valore è 2. Per uno schema frattale, tuttavia, la ripetizione della struttura fa sì che la linea occupi un'area. D assume quindi un valore intermedio tra 1 e 2 (man mano che la complessità e la ricchezza della struttura da ripetere aumentano, il valore si muove velocemente verso 2).

Commenti dei lettori

  1. Commento di zoneX - 27/4/2007 ore 8,1

    ciao Michele :)
    Sono sempre stato affascinato che equazioni matematiche producessero dei bellissimi effetti di colori e luci.
    Per non dire che avevo seguito un sito che adesso non ricordo che spiegava bene molte cose. Il tuo articolo ha aggiunto altre notizie e fonti , come sempre.
    Poi, scusami se non mi sono fatto vivo, ma sto studiando veramente l'accessibilità su WordPress[insieme a enetweb]e ho conosciuto S. Onofri che mi ha portato a implementare dati semantici.
    Sono contento dei risultati che ho raggiunto : non credevo di riuscirci.Cerco di far finta di vederci ^_-
    A presto, amico mio
    con affetto e molta stima....
    Francesco Grossi
  2. Commento di Michele Diodati - 27/4/2007 ore 8,15

    Ciao Francesco,
    complimenti per i tuoi progressi e auguri per il futuro :-) Ma, diamo a Cesare quel che è di Cesare: l'articolo sui frattali non è opera mia, ma di Fausto Intilla, come è riportato a pie' di pagina. Il mio blog è solo l'ospite di questo scritto. Sono contento, comunque, che ti sia piaciuto ;-)

    Un caro saluto e a risentirci presto!
    Michele
  3. Commento di Fausto Intilla - 22/6/2007 ore 12,9

    Credo che Pollock, con la frase :"Io mi occupo dei ritmi della natura", intendesse semplicemente evidenziare una certa correlazione tra il "lato pratico" della tecnica dello sgocciolamento, e alcuni aspetti della natura che l'uomo ormai conosce sin dalla notte dei tempi.
    Sicuramente influenzato quindi da uno di questi "aspetti della natura", come ad esempio il moto e i flussi del vento, ha cercato di ricreare artificialmente (con la tecnica che tutti conosciamo: lo sgocciolamento), una sorta di "parallelismo" tra i due "eventi" (tecnica e natura), da potersi concretamente espletare nell'esecuzione delle sue tele; a dimostrazione appunto dell'oggettività di tale idea. Oggi sappiamo comunque che tali idee (che un tempo potevano restare unicamente nel campo delle ipotesi), hanno delle basi scientifico-matematiche piuttosto concrete.
    Se prendiamo ad esempio in considerazione il gocciolamento di un rubinetto, non osserviamo nient'altro che una sorta di "caos in miniatura"; esso rappresenta inoltre un sistema dinamico discreto, più facile sia da osservare che da analizzare di un sistema continuo. In condizioni di "flusso ordinario" (lento), avremo quindi delle gocce ritmiche e ripetitive; se però il flusso aumenta, la goccia, formandosi, vibra. Essa non ha perciò la possibilità di entrare in uno stato stazionario di lento accrescimento. Di conseguenza, il preciso istante in cui essa si stacca dipende non solo da quanta acqua è entrata nella goccia, ma anche dalla velocità con cui questa si muove nella sua oscillazione. In tali circostanze le gocce possono prodursi a intervalli irregolari, aperiodici.
    L'analogia con il flusso di un fluido, risulta quindi evidente. A piccole velocità un fluido scorre in modo regolare, ma a velocità maggiori compie una transizione alla turbolenza; ciò significa che a piccole velocità le gocce si formano regolarmente, mentre a velocità più elevate diventano irregolari. Grazie ad alcuni esperimenti condotti alla UCSC circa venti anni fa da Robert Shaw e colleghi, si è arrivati a ricostruire la topologia di un attrattore nella dinamica di un rubinetto che gocciola. Oggi quindi sappiamo che un attrattore strano è effettivamente responsabile del regime non periodico del gocciolamento di un rubinetto all'aumentare del flusso d'acqua (l'attrattore che viene a crearsi è simile a quello di Hénon). A velocità di flusso più elevate l'attrattore sperimentale diventa molto complicato, e la sua struttura credo che non sia stata ancora compresa. Se quindi l'idea che la dinamica caotica degli attrattori strani sia responsabile almeno di alcuni fenomeni turbolenti è ormai accettata, gran parte della turbolenza rimane però un mistero. Alcuni aspetti "matematici" quindi della tecnica di Pollock, debbono ancor oggi essere risolti.

    Fausto Intilla
    www.oloscience.com

Articolo di Fausto Intilla pubblicato il  25/4/2007 alle ore 1,14.

Indice del Pesa-Nervi | Diodati.org

Inizio pagina.